A variational approach to the regularity of minimal surfaces of annulus type in Riemannian manifolds

نویسنده

  • Hwajeong Kim
چکیده

Given two Jordan curves in a Riemannian manifold, a minimal surface of annulus type bounded by these curves is described as the harmonic extension of a critical point of some functional (the Dirichlet integral) in a certain space of boundary parametrizations. The H2,2regularity of the minimal surface of annulus type will be proved by applying the critical points theory and Morrey’s growth condition. Mathematics Subject Classification(2000): 49Q05, 58E05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unstable minimal surfaces of annulus type in manifolds

Unstable minimal surfaces are the unstable stationary points of the Dirichlet-Integral. In order to obtain unstable solutions, the method of the gradient flow together with the minimaxprinciple is generally used. The application of this method for minimal surfaces in the Euclidean spacce was presented in [St2]. We extend this theory for obtaining unstable minimal surfaces in Riemannian manifold...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

GEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW

The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...

متن کامل

ar X iv : 0 80 4 . 34 06 v 1 [ m at h . A P ] 2 1 A pr 2 00 8 REGULARITY OF NON - CHARACTERISTIC MINIMAL GRAPHS IN THE HEISENBERG GROUP

Minimal surfaces in the sub-Riemannian Heisenberg group can be constructed by means of a Riemannian approximation scheme, as limit of Riemannian minimal surfaces. We study the regularity of Lipschitz, non-characteristic minimal surfaces which arise as such limits. Our main results are a-priori estimates on the solutions of the approximating Riemannian PDE and the ensuing C∞ regularity of the su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008